Noncommutative Ward’s Conjecture and Integrable Systems
نویسنده
چکیده
Noncommutative Ward’s conjecture is a noncommutative version of the original Ward’s conjecture which says that almost all integrable equations can be obtained from anti-selfdual Yang-Mills equations by reduction. In this paper, we prove that wide class of noncommutative integrable equations in both (2+1)and (1+1)-dimensions are actually reductions of noncommutative anti-self-dual Yang-Mills equations with finite gauge groups, which include noncommutative versions of Calogero-Bogoyavlenskii-Schiff eq., Zakharov system, Ward’s chiral and topological chiral models, (modified) Korteweg-de Vries, NonLinear Schrödinger, Boussinesq, N-wave, (affine) Toda, sine-Gordon, Liouville, Tzitzéica, (Ward’s) harmonic map eqs., and so on. This would guarantee existence of twistor description of them and the corresponding physical situations in N=2 string theory, and lead to fruitful applications to noncommutative integrable systems and string theories. Some integrable aspects of them are also discussed. The author visits Oxford from 16 August, 2005 to 15 August, 2006, supported by the Yamada Science Foundation. E-mail: [email protected], [email protected]
منابع مشابه
Noncommutative Solitons and Integrable Systems *
We review recent developments of soliton theories and integrable systems on noncommutative spaces. The former part is a brief review of noncommutative gauge theories focusing on ADHM construction of noncommutative instantons. The latter part is a report on recent results of existence of infinite conserved densities and exact multi-soliton solutions for noncommutative Gelfand-Dickey hierarchies....
متن کاملOn Reductions of Noncommutative Anti-Self-Dual Yang-Mills Equations
In this paper, we show that various noncommutative integrable equations can be derived from noncommutative anti-self-dual Yang-Mills equations in the split signature, which include noncommutative versions of Korteweg-de Vries, Non-Linear Schrödinger, N -wave, Davey-Stewartson and Kadomtsev-Petviashvili equations. U(1) part of gauge groups for the original Yang-Mills equations play crucial roles...
متن کاملTowards Noncommutative Integrable Systems
We present a powerful method to generate various equations which possess the Lax representations on noncommutative (1+1) and (1+2)-dimensional spaces. The generated equations contain noncommutative integrable equations obtained by using the bicomplex method and by reductions of the noncommutative (anti-)self-dual Yang-Mills equation. This suggests that the noncommutative Lax equations would be ...
متن کاملOn Lax pairs and matrix extended simple Toda systems
Noncommutative theories have been studied and probed from different viewpoints (see reviews [18, 34, 48]). For instance, a number of noncommutative generalizations of integrable systems were presented (see, e.g., [9, 16, 17, 24, 39]). Solutions were investigated using the dressing method and Riemann-Hilbert problems, formulations, and properties such as infinite sets of conserved quantities wer...
متن کاملNoncommutative Solitons and D-branes
D-branes are mysterious solitons in string theories and play crucial roles in the study of the non-perturbative aspects. Among many ways to analyze the properties of D-branes, gauge theoretical analysis often become very strong to study the dynamics especially at the low-energy scale. It is very interesting that gauge theories live on the D-branes are useful to study the D-branes themselves (ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006